Machine learning algorithm enables faster, more accurate predictions on small tabular data sets

Filling gaps in data sets or identifying outliers—that’s the domain of the machine learning algorithm TabPFN, developed by a team led by Prof. Dr. Frank Hutter from the University of Freiburg. This artificial intelligence (AI) uses learning methods inspired by large language models. TabPFN learns causal relationships from synthetic data and is therefore more likely to make correct predictions than the standard algorithms that have been used up to now.

This article was originally published on this website.

Skip The Dishes Referral Code 5 off